Protein hydration and unfolding--insights from experimental partial specific volumes and unfolded protein models.

نویسندگان

  • L R Murphy
  • N Matubayasi
  • V A Payne
  • R M Levy
چکیده

BACKGROUND The partial specific volume of a protein is an experimental quantity containing information about solute-solvent interactions and protein hydration. We use a hydration-shell model to partition the partial specific volume into an intrinsic volume occupied by the protein and a change in the volume occupied by the solvent resulting from the solvent interactions with the protein. We seek to extract microscopic information about protein hydration and unfolding from experimental volume measurements without using computer simulations. We employ the idea that the protein-solvent interaction will be proportional to the surface area of the protein. RESULTS A linear relationship is obtained when the difference between the experimental protein partial specific volume and its intrinsic volume is plotted as a function of the protein solvent-accessible surface area. The effect of using different protein volume definitions on the analysis of protein volumetric properties is discussed. Volumetric data are used to test a model for the unfolded state of proteins and to make predictions about the denatured state. CONCLUSIONS The linear relationship between hydration-shell volume change and accessible surface area reflects the similar surface properties (fractional composition of nonpolar, polar and charged surface) among a diverse set of proteins. This linear relationship is found to be independent of how the solution is partitioned into solute and solvent components. The interpretation of hydration shell versus bulk water properties is found to be very model dependent, however. The maximally exposed unfolded protein model is found to be inconsistent with experimental volume changes of unfolding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydration in protein folding: thermal unfolding/refolding of human serum albumin.

Human serum albumin (HSA) is known to undergo both reversible and irreversible thermal unfolding and refolding, depending upon the experimental conditions (end temperature) at neutral pH. In this report we have used high precision densimetric and ultrasonic measurements to determine the apparent specific volume (phi v) and compressibility (phi k) of HSA at different unfolded and refolded states...

متن کامل

Ultrafast hydration dynamics in protein unfolding: human serum albumin.

We report studies of unfolding and ultrafast hydration dynamics of the protein human serum albumin. Unique in this study is our ability to examine different domains of the same protein and the intermediate on the way to the unfolded state. With femtosecond resolution and site-selective labeling, we isolate the dynamics of domains I and II of the native protein, domain I of the intermediate at 2...

متن کامل

Specific Heat upon Aqueous Unfolding of the Protein Interior: A Theoretical Approach

We study theoretically the thermodynamics, over a broad temperature range (5◦C to 125 ◦C), related to hydrated water upon protein unfolding. The hydration effect is modeled as interacting dipoles in an external field, mimicking the influence from the unfolded surfaces on the surrounding water compared to bulk water. The heat capacity change upon hydration is compared with experimental data from...

متن کامل

Hydration dynamics of a halophilic protein in folded and unfolded states.

Proteins from halophilic microorganisms thriving at high salinity have an excess of charged carboxylate groups, and it is widely believed that this gives rise to an exceptionally strong hydration that stabilizes these proteins against unfolding and aggregation. Here, we examine this hypothesis by characterizing the hydration dynamics of a halophilic model protein with frequency- and temperature...

متن کامل

Protein unfolding as a switch from self-recognition to high-affinity client binding

Stress-specific activation of the chaperone Hsp33 requires the unfolding of a central linker region. This activation mechanism suggests an intriguing functional relationship between the chaperone's own partial unfolding and its ability to bind other partially folded client proteins. However, identifying where Hsp33 binds its clients has remained a major gap in our understanding of Hsp33's worki...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Folding & design

دوره 3 2  شماره 

صفحات  -

تاریخ انتشار 1998